Compounds of plant origin such as rotenone, nicotine, anabasine, methyl anabasine and lupinine were found effective in killing *Culex territans* (Diptera: Culicidae). Most effective compound of plant origin for the control of adult mosquitoes is pyrethrum extract (mixture of esters of pyrethrins and cinnerins) obtained from the flowers of *Chrysanthemum cinneraefolium* (Family: Asteraceae). This extract was first used successfully in vector control operations in South Africa\(^2\)\(^3\) and later in India\(^4\)\(^6\). In India pyrethrum extract

"Present address: World Health Organization Regional Office for South-East Asia, World Health House, New Delhi 110 002, India
is still used for liquidation of epidemic foci in antimalaria programme. Due to environmental concern on use of synthetic insecticides for vector control and due to existing and further risk of development of widespread insecticide resistance in disease vectors, interest on possible use of environment friendly natural products such as extracts of plant/plant parts increased for vector control. Sukumar et al listed 346 species from 276 genera and 99 families which have been tested against mosquitoes for various effects such as toxicity, growth inhibition, ovipositional deterrency and repellency. This list included 5 species from family Solanaceae namely Capsicum frutescens, Datura candida, D. stramonium, Lycopersicon lycopersicum, and Nicotiana rustica. Recently larvicidal properties of the aqueous extract of the leaf of Solanum nigrum against Anopheles culicifacies species A, Culex quinquefasciatus (Say) and Aedes aegypti (Linn.) and larvicidal properties of fruit and root extract of Solanum xanthocarpum against An. stephensi, Ae. aegypti (Linn.) and Cx. quinquefasciatus (Say) were reported. This study was carried out to evaluate the larvicidal efficacy of the aqueous and hexane extracts of the dried fruit of S. nigrum against five important mosquito species, namely An. culicifacies species A and An. culicifacies C and An. stephensi (malaria vectors), Cx. quinquefasciatus (filariasis vector) and Ae. aegypti (dengue vector).

Material & Methods

Mosquito strains: The study was conducted in the National Institute of Malaria Research, New Delhi. Laboratory colonized mosquito strains namely An. culicifacies species A, An. culicifacies species C, An. stephensi, Cx. quinquefasciatus and Ae. aegypti were used for the studies.

Preparation of extract: Ripe fruits were collected from the wild S. nigrum plants from villages in district Agra (Uttar Pradesh) and Delhi State. Fruits were dried in shade and ground to fine powder in an electric grinder. Aqueous extract was prepared by mixing 2 g of dried fruit powder with 1000 ml of water (boiled and cooled tap water) with constant stirring on a magnetic stirrer. The suspension of dried fruit powder in water was left for 2 h, filtered through Whatman No.1 filter paper (M/s Glassill Scientific Industries, Delhi) and the filtrate was stored in amber coloured air tight bottle at room temperature till use. Hexane extract of the seeds was made essentially following the method of Mehra and Hardhar. 25 g of the dried fruit powder was mixed with n-Hexane (SRL, India) (10% w/v) in the bottle and left overnight at room temperature. The mixture was stirred for 1 h on magnetic stirrer and filtered through muslin cloth. The residue was remixed with n-hexane (10% w/v) and the above procedure of extraction was repeated. The filtrate was allowed to dry at room temperature for 2-3 days in a beaker. The resultant gummy extract was scratched from the bottom of the beaker and was stored in amber coloured air tight glass bottle at room temperature till use.

Bioassays: Larval bioassays were performed essentially following the standard WHO method in a laboratory maintained at 27±2°C. Replicates of 25 late III and early IV instar larvae of different mosquito strains were used for bioassays. Six concentrations of aqueous extract, 62.5, 125, 250, 500, 1000 and 2000 ppm and nine concentrations of hexane extract in acetone, 0.781, 1.562, 3.125, 6.25, 12.5, 25, 50, 100 and 150 ppm were prepared in 250 ml boiled and cooled water. Atleast two control replicates were run simultaneously which included water controls for tests with aqueous extract and acetone controls (1 ml in 249 ml water) for tests with hexane extract in acetone. The number of dead and alive larvae in the replicates was recorded after 24 h and the results were expressed as per cent mortality. Observed mortality in control replicates, if in the range of 5-20 per cent, were corrected with mortalities in test replicates using Abbot’s formula. The dose-mortality response of the respective extracts with different species was subjected to log-probit regression analysis to determine lethal concentrations that kill 50 per cent of the treated larvae (LC$_{50}$) and 90 per cent of the treated larvae (LC$_{90}$).

Results & Discussion

All the species registered 100 per cent mortality in bioassays with aqueous extract at 1000 ppm except Ae. aegypti (96%). The LC$_{50}$ of An. culicifacies species A was the lowest while that of Ae. aegypti was highest in the order, An. culicifacies species A (208.5 ppm) >An. stephensi (242.5 ppm) >An. culicifacies species C (251.7 ppm) >Cx. quinquefasciatus (337.2 ppm) >Ae. aegypti (359 ppm) (Table 1). Hexane extract was relatively more effective. With hexane extract, these species registered 100 per cent mortality at 100 ppm except Ae. aegypti that showed 100 per cent mortality at 150 ppm. The LC$_{50}$ for different species was in the range of 6.25 to 17.63 ppm in the order An. stephensi (6.25 ppm) >An. culicifacies species C (9.04 ppm) >Cx. quinquefasciatus (12.25 ppm) >An. culicifacies species A (15.93 ppm) >Ae. aegypti (17.63 ppm) (Table
Table I. Per cent mortality of different mosquito larvae against aqueous extract of dried fruit of Solanum nigrum (Linn.)

<table>
<thead>
<tr>
<th>Mosquito species (R)</th>
<th>Concentration (parts per million)</th>
<th>LC<sub>50</sub> (95% FL)</th>
<th>LC<sub>90</sub> (95% FL)</th>
<th>P (df)</th>
<th>Comparative toxicity* (fold)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>62.5</td>
<td>125</td>
<td>250</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>An. culicifacies A (2)</td>
<td>8</td>
<td>32</td>
<td>60</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>An. culicifacies C (12)</td>
<td>1.6</td>
<td>2.6</td>
<td>28.3</td>
<td>76.6</td>
<td>100</td>
</tr>
<tr>
<td>An. stephensi (12)</td>
<td>3.6</td>
<td>8.3</td>
<td>51.3</td>
<td>90.6</td>
<td>100</td>
</tr>
<tr>
<td>Cx. quinquefasciatus (12)</td>
<td>2.3</td>
<td>5.3</td>
<td>45</td>
<td>94.6</td>
<td>100</td>
</tr>
<tr>
<td>Ae. aegypti (2)</td>
<td>4</td>
<td>6</td>
<td>24</td>
<td>70</td>
<td>96</td>
</tr>
</tbody>
</table>

(R, No. of replicates @ 25 larvae/replicate at each concentration; *LC₅₀, concentration for killing 50 per cent of the treated larvae; *LC₉₀, concentration for killing 90 per cent of the treated larvae; FL, Fiducial limit; *Comparative toxicity of species with reference to LC₅₀ of An. culicifacies species A

Table II. Per cent mortality of mosquito larvae against hexane extract of dried fruit of Solanum nigrum

<table>
<thead>
<tr>
<th>Mosquito species (R)</th>
<th>Concentration (parts per million)</th>
<th>LC<sub>50</sub> (95% FL)</th>
<th>LC<sub>90</sub> (95% FL)</th>
<th>P (df)</th>
<th>Comparative toxicity* (fold)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.781</td>
<td>1.562</td>
<td>3.125</td>
<td>6.25</td>
<td>12.50</td>
</tr>
<tr>
<td>An. culicifacies A (4)</td>
<td>5</td>
<td>10</td>
<td>13</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>An. culicifacies C (2)</td>
<td>6</td>
<td>10</td>
<td>20</td>
<td>36</td>
<td>60</td>
</tr>
<tr>
<td>An. stephensi (4)</td>
<td>10</td>
<td>22</td>
<td>32</td>
<td>50</td>
<td>58</td>
</tr>
<tr>
<td>Cx. quinquefasciatus (4)</td>
<td>2</td>
<td>6</td>
<td>11</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Ae. aegypti (2)</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

(R, No. of replicates @ 25 larvae/replicate at each concentration; *LC₅₀, concentration for killing 50 per cent of the treated larvae; *LC₉₀, concentration for killing 90 per cent of the treated larvae; FL, Fiducial limit; *Comparative toxicity of species with reference to LC₅₀ of An. stephensi species A

II). No mortalities were recorded in respective control replicates.

Present study indicated variations in larvicidal efficacy of the extracts in different mosquito species. Minjas and Sarda¹¹ reported variations in toxicological efficacy with three mosquito species to the crude aqueous extract of fruit pods of Swartzia madagascariensis to which Cx. quinquefasciatus was completely susceptible while An. gambiae was relatively more susceptible to the extract than Ae. aegypti¹¹. Similar observations were made by Sujatha et al.¹⁵ with petroleum ether extract of six plants Acorus calamus, Ageratum conyzoides, Annona squamosa, Bambusa arundanasia, Madhuca longifolia and Citrus medica against three species of mosquitoes, An. gambiae, Ae. aegypti and Cx. quinquefasciatus. Pathak et al.¹⁶ also reported variations in larvicidal efficacy of essential oil extracts from four plants Tagetes erecta, Ocimum sanctum, Mentha piperita and Murrya koenigii against three species of mosquitoes, An. stephensi, Ae. aegypti and Cx. quinquefasciatus. Thomas et al.¹³ found variations in three species, An. stephensi, Cx. quinquefasciatus and Ae. aegypti, of which the former two species were found equitoxic to the crude extract of Yucca aloifolia.

In the present study the larvicidal efficacy of hexane extract of dried fruits of S. nigrum was found to be higher than the aqueous extract. The LC₅₀ values indicated 13-39 fold (LC₉₀ aqueous extract of seed/LC₅₀ hexane extract of seed) enhanced toxicity of hexane extract compared to aqueous extract. It was respectively 13 fold against An. culicifacies species A, 20 fold against Ae. aegypti, 28 fold against An.
culicifacies species C and Cx. quinquefasciatus and 39 fold against An. stephensi. Hexane extract was found comprehensively effective against five mosquito species of three genera and the observed LC$_{50}$ value was <20 ppm and LC$_{90}$ values <100 ppm. In conclusion, our findings showed that the hexane extract of the dried fruit of S. nigrum was effective for larval control of the species tested. The feasibility of its use in field, however, needs extensive field trials.

Acknowledgment

Authors thank Shriyuts K.B. Masiwal, Narender Kumar, P.K. Gupta and R.S. Sharma for technical assistance.

References

6. Vishwanathan DK. Experimental malaria control in hyper-endemic tea garden in upper Assam by the use of pyrocide 20, as an insecticidal spray. *J Malar Inst India* 1941; 4: 35-55.

Reprint requests: Dr K. Raghavendra, National Institute of Malaria Research (ICMR), Sector 8, Dwarka, New Delhi 110 077, India e-mail: kamarajur2000@yahoo.com